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Abstract: If ( )zp  is a polynomial of degree n which does not vanish 

in kz < , where 1≥k , then for each 0r >  and ns <≤1 , Aziz and 

Rather [ J. Math. Anal. Appl., 289(2004), 14-29] proved 
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In this paper, we prove an improvement of this inequality 

which besides gives some interesting results as corollaries, 

includes some well-known results as special cases.   

1. INTRODUCTION 
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If we let ∞→r in (1.1) and make use of the well-known fact 

from analysis [13, 14] that  
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we obtain the following inequalities 
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Inequality (1.3) is a classical result due to Bernstein [3].  

If we restrict ourselves to the class of polynomials having no 

zero in 1<z , then inequality (1.1) can be improved. In fact, 

the following results are known. 

Theorem A.  If is a polynomial of degree n having no zero in

1<z , then for each 0>r ,                        

( ) ( )
1 1

2 2

0 0

r rr r
i i

r
p e d nC p e d

π π
θ θθ θ

      
′ ≤   

      
∫ ∫ ,    (1.4)                            

where  

r
r

i
r deC

1

2

0

1
2

1
−













+= ∫
π

α α
π

.   

In (1.4), equality occurs for ( ) βα += n
zzp , βα = . 

For 1≥r , Theorem A was found by de-Bruijn [4] and later 

independently proved by Rahman [10]. For the special case

2=r , it was proved by Lax [9]. Rahman and Schmeisser [11] 

showed that (1.4) remain valid for 10 << r  as well. 

For the class of polynomials having no zero in the disc kz < ,

1≥k , Govil and Rahman [7] proved the following inequality 

(1.5) for 1≥r . 

Later it was shown by Gardner and Weems [6], and 

independently by Rather [12] that inequality (1.5) also holds 

for 10 << r . 

Theorem B. If ( )zp  is a polynomial of degree n having no 

zero in kz < , 1≥k , then for 0>r ,                                       
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For the same class of polynomials, Aziz and Shah [2] 

considered the sth derivative of ( )zp , ns <≤1 , and generalized 

inequality (1.5) by proving  

Theorem C. If ( )zp  is a polynomial of degree n which does 

not vanish in kz < , where 1≥k , then for each 0r >  and

ns <≤1 , 
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  (1.6)                    

By involving some coefficients and min ( )
z k

m p z
=

= , we present 

a generalization and an improvement of Theorem C. More 

precisely, we obtain 

Theorem. If ( )zp is a polynomial of degree n which does not 

vanish in kz < , where 1≥k , then for each 0r > , ns <≤1 , 

and for every real or complex number β  such that 
n
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1
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where  
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Remark 1. If we put 0β = , our theorem directly reduces to 

the following result proved by  Aziz and Rather [1] and is an  

improvement of inequality (1.6) due to Aziz and Shah [2]. 

Corollary 1. If ( )zp  is a polynomial of degree n which does 

not vanish in ,kz < where 1≥k , then for each 0r >  and

ns <≤1 ,          
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Remark 2. Taking limit of both sides of (1.7) as r → ∞ , we 

have  
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If we choose 0z  such that ( ) ( )0
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 Now choosing the argument of β  in (1.10) suitably such that  
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Remark 3. Inequality (1.11) improves upon the following 

result due to Aziz and Rather [1]. 

Corollary 2. If ( ) ∑
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Remark 4.  For 1=s , (1.12) becomes  

( )
( )

( )

( )

2

0 1

2 21 1
0 1

2 2

0 1

2 2

0 1

max max
1 2

1 2

z z

n

n a a k
p z n p z

n a k a k

n a k a k m
n

kn a k a k

= =

 + 
′ ≤  

+ +  

 + 
−  

+ +  

. 

which gives an improvement of the following result due to 

Govil et al. [8]. 
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2. Lemma 

For the proof of the theorem, we require the following lemmas. 

Lemma 2.1. If  ( )zp  is a polynomial of degree n and
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The above lemma is due to Aziz and Rather [1]. 

Lemma 2.2. Let z be complex and independent ofα , where α
is real, then for 0r > , 
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This lemma is due to Govil [5]. 

Lemma 2.3. If ( )zp is a polynomial of degree n which does not 

vanish in kz < , where 1≥k , then for ns <≤1 , and 1z = ,  
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Proof of the Theorem  

Since β , a real or complex number such that
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inequality (3.4) follows trivially. Using (3.2) in (3.4), it is 
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This proves the Theorem.  
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