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Abstract: If p(z) is a polynomial of degree n which does not vanish
in |z|<k, where k 21, then for each r >0 and1<s<n, Aziz and
Rather [ J. Math. Anal. Appl., 289(2004), 14-29] proved
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In this paper, we prove an improvement of this inequality
which besides gives some interesting results as corollaries,
includes some well-known results as special cases.

1. INTRODUCTION

Let p(z)= Zavzv be a polynomial of degree n and p’(z) be
v=0
its derivative, then for r >0,
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If we let r > ocin (1.1) and make use of the well-known fact
from analysis [13, 14] that

1 2z ‘ , l
}E?o{gﬂl’(”)\ dﬁ} =max|p ()]

(1.2)
we obtain the following inequalities
max|p )|Snmax|p | (1.3)
z‘ 1 z‘ 1

Inequality (1.3) is a classical result due to Bernstein [3].

If we restrict ourselves to the class of polynomials having no
Zero in|z| <1, then inequality (1.1) can be improved. In fact,

the following results are known.

Theorem A If is a polynomial of degree n having no zero in
|z| <1, then for eachr >0,
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In (1.4), equality occurs for p(z)=a " + f3, |0!| = |,B| .

Forr >1, Theorem A was found by de-Bruijn [4] and later
independently proved by Rahman [10]. For the special case
r =2, it was proved by Lax [9]. Rahman and Schmeisser [11]
showed that (1.4) remain valid for 0<r <1 as well.

For the class of polynomials having no zero in the disc|z| <k,

k=21, Govil and Rahman [7] proved the following inequality
(1.5) forr>1.

Later it was shown by Gardner and Weems [6], and
independently by Rather [12] that inequality (1.5) also holds
forO<r<l1.

Theorem B. If p(z) is a polynomial of degree n having no

zero in |z|<k, k=1, then for r >0,

e e

where
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For the same class of polynomials, Aziz and Shah [2]
considered the sth derivative of p(z) ,1<s<n, and generalized

inequality (1.5) by proving

Theorem C. If p(z) is a polynomial of degree n which does
not vanish in|z|<k, where k 21, then for each r > 0 and

1<s<n,

b
27y, b

(1.6)

By involving some coefficients and m = min| p(z)| , we present

=k
a generalization and an improvement of Theorem C. More
precisely, we obtain

Theorem. If p(z)is a polynomial of degree n which does not

vanish in|z|<k, wherek 21, then for eachr >0, 1<s<n,

1
and for every real or complex number B such that |,5| < k—n,
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where
m= min|p(z) |
|<[=k

and

c(n, s)|ao|ks+l +|ax|k2S
51‘ s = s+1
c(n, s)|a0| + |ax|k

} with c(n,s)=

s!(n—s)! ’

Remark 1. If we put =0, our theorem directly reduces to

the following result proved by Aziz and Rather [1] and is an
improvement of inequality (1.6) due to Aziz and Shah [2].

Corollary 1. If p(z) is a polynomial of degree n which does
not vanish in |z| <k,wherek 21, then for each r > 0 and

1<s<n,

el
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where

c(n,s)|aglk** +|a k>
5" s = s+l
c(n, s)|a0| +|as|k
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Remark 2. Taking limit of both sides of (1.7) asr — o0, we
have

maX|P )+ Bmn(n-1)..... (n—s+1)zll—.r|g

o, +1
xmax|o()
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< max[p(2) +[ 8] m).

If we choose z;, such that max‘ p ‘ = ‘ p’ (zo)‘ . It is clear that

P’ (20)+ Bmn(n=1).....(n=s+1)5,""|

< max|p' (2)

and hence (1.9), in particular, gives

Y — (n—s+1) {H wip I+ Wm}
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ks
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Now choosing the argument of £ in (1.10) suitably such that
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p’ (ZO)‘ <
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which is equivalent to

max‘p‘” (z)‘ <
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Finally, letting | ,B| , we obtain

c(n,s)|a0|+|ax k!
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Remark 3. Inequality (1.11) improves upon the following
result due to Aziz and Rather [1].

Corollary 2. If p(z)zZavz" is a polynomial of degree n
=0
which does not vanish in|z | <k, wherek 21, then

ax p;(z)|s{c(

m
[2|=1
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Remark 4. For s=1, (1.12) becomes

2
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which gives an improvement of the following result due to
Govil et al. [8].

Corollary 3. If p(z):Zasz is a polynomial of degree n
v=0
wherek 21,

which does not vanish in|z|<k, then

max|p | nJa0|+lal|k2 nmax|p(z)|.
=1 la| 1+ K2 )+ 2lay k2 [l

2. Lemma

For the proof of the theorem, we require the following lemmas.
Lemma 2.1. If p(z) is a polynomial of degree n and

1
q(z)zz" p(:], then for eacha, 0< o <27 andr >0,
Z
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[flobe bt anszaen i) a0
00

2.1)

The above lemma is due to Aziz and Rather [1].

Lemma 2.2. Let z be complex and independent of & , where O
is real, then forr > 0,

2r . 2r .
H1+ze’”" da:j ‘e'”+|z|‘ da . 2.2)
0 0

This lemma is due to Govil [5].

Lemma 2.3. If p(z) is a polynomial of degree n which does not
vanish in|z|<k, where k 21, then for 1< s<n, and |z| =1,

(2.3)
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where By lemma 2.3, we have forl1<s<n, f0r|z| =1,
c(n,s)‘ao‘ks-"1 +|as|k2S 5k$x|P(”(z)| S|Q (”(z)| , (3.3)
ks s+l
c(n’s)‘a0‘+|as|k where &, >1is as defined in lemma 2.3. It can be easily
verified that for every real number « andR>R'>1,
! i i
with c(n,s)=——""— . |R+€ 2 |
sl(n—s)!

This implies for eachr >0,
Proof of the Theorem

2z 2z
Since f, a real or complex number such that|ﬂ|<ki 2[|R+€w{| da2£|R +em[| da.

therefore on |z| =k . ) . ) i0
For pointse'”, 0< 8 <27, for which P (e ) #0, we take

—m|p

k" <m= rrnn|p |

R= — and R'=0,,thenby (3.3), R2R'>1,

By Rouché’s theorem, the polynomial P(z)= p(z)+mpBz" ‘P (e ‘

will have no zero in |z| <k, k>1. Further, the case for m=0is

.. 2z P 72,[ ) i .

trivially true. I |Q(A’)(ei9)+eiap(s)(ei9 )| da:|P(x)(ei9) Q( )(6‘6) | Jdo

o e )
. 1
Let F(z)=0Q(z)+e“P(z), e R where Q(z)=2z" P[§] | P (e?) | .f |6, +e
the reciprocal polynomial is. Then F(z) is a polynomial of (3.4)

degree n and F “(z)=0"“(z)+e“Q“(z) is a polynomial .
. i . s i
of degree n—s. By repeated application of inequality (1.1), it ~Also for pointse’™, 0<@<2x, for which P : )(3 )= 0,

follows for eachr >0, inequality (3.4) follows trivially. Using (3.2) in (3.4), it is
concluded that for each » >0,

T ‘Q(” () +e“P (e )‘r dO<(n-s+1) . N r
0 [ 8. +e| daf |PO(e”) do<n—s+1)(n=s+2)..
y j 0 (e e po () a0 °

x(n—l)fn’z;zzf |P(e”)[ a6
S(n—s+1)’(n—s+2) (n=1)" 0

oo 3.1 : 3.5)
J+e“P'(e)| do G-b
On replacing P(z) in (3.5) by p(z)+mpB 7", we have
Integrating (3.1) with respect to & on[0, 27), and using lemma . . s
2.1, we get [ j ‘p +,an(n ) (n—s+1)el("7‘r)e‘ dﬁ]
2
j ‘Q(” )+e“P (e )‘ dO<(n—s+1) (n—s+2) ... . '
o =D =5 +1) [—Hp(e"‘")+ﬁme""“de]
2727 . 27-[
vep/(e?)[ doda [ f|5kr+€’“| da}
2z
<S(—s+1) (n—s+2) ..(n=1)'n" j |P(e"9) |’da. This proves the Theorem.

0

(3.2)
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