L^{r} Inequalities for Polynomials with Restricted Zeros

Barchand Chanam
Associate Professor, National Institute of Technology Manipur, Manipur, India
barchand_2004@yahoo.co.in

Abstract: If $p(z)$ is a polynomial of degree n which does not vanish in $|z|<k$, where $k \geq 1$, then for each $r>0$ and $1 \leq s<n$, Aziz and Rather [J. Math. Anal. Appl., 289(2004), 14-29] proved

$$
\begin{aligned}
\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|p^{s}\left(e^{i \theta}\right)\right|^{r} d \theta\right)^{\frac{1}{r}} & \leq \frac{n(n-1) \ldots \ldots(n-s+1)}{\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|k^{s}+e^{i \alpha}\right|^{r} d \alpha\right)^{\frac{1}{r}}} \\
& \times\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|p\left(e^{i \theta}\right)\right|^{r} d \theta\right)^{\frac{1}{r}}
\end{aligned}
$$

In this paper, we prove an improvement of this inequality which besides gives some interesting results as corollaries, includes some well-known results as special cases.

1. INTRODUCTION

Let $p(z)=\sum_{v=0}^{n} a_{v} z^{v}$ be a polynomial of degree n and $p^{\prime}(z)$ be its derivative, then for $r>0$,

$$
\begin{equation*}
\left\{\int_{0}^{2 \pi}\left|p^{\prime}\left(e^{i \theta}\right)\right|^{r} d \theta\right\}^{\frac{1}{r}} \leq n\left\{\int_{0}^{2 \pi}\left|p\left(e^{i \theta}\right)\right|^{r} d \theta\right\}^{\frac{1}{r}} \tag{1.1}
\end{equation*}
$$

If we let $r \rightarrow \infty$ in (1.1) and make use of the well-known fact from analysis [13, 14] that

$$
\begin{equation*}
\lim _{r \rightarrow \infty}\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|p\left(e^{i \theta}\right)\right|^{r} d \theta\right\}^{\frac{1}{r}}=\max _{|z|=1}|p(z)| \tag{1.2}
\end{equation*}
$$

we obtain the following inequalities

$$
\begin{equation*}
\max _{|z|=1}\left|p^{\prime}(z)\right| \leq n \max _{|z|=1}|p(z)| \tag{1.3}
\end{equation*}
$$

Inequality (1.3) is a classical result due to Bernstein [3].

If we restrict ourselves to the class of polynomials having no zero in $|z|<1$, then inequality (1.1) can be improved. In fact, the following results are known.

Theorem A. If is a polynomial of degree n having no zero in $|z|<1$, then for each $r>0$,
$\left\{\int_{0}^{2 \pi}\left|p^{\prime}\left(e^{i \theta}\right)\right|^{r} d \boldsymbol{\theta}\right\}^{\frac{1}{r}} \leq n C_{r}\left\{\int_{0}^{2 \pi}\left|p\left(e^{i \theta}\right)\right|^{r} d \boldsymbol{\theta}\right\}^{\frac{1}{r}}$,
where
$C_{r}=\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|1+e^{i \alpha}\right|^{r} d \alpha\right\}^{-\frac{1}{r}}$.

In (1.4), equality occurs for $p(z)=\alpha z^{n}+\beta,|\alpha|=|\beta|$.
For $r \geq 1$, Theorem A was found by de-Bruijn [4] and later independently proved by Rahman [10]. For the special case $r=2$, it was proved by Lax [9]. Rahman and Schmeisser [11] showed that (1.4) remain valid for $0<r<1$ as well.

For the class of polynomials having no zero in the disc $|z|<k$, $k \geq 1$, Govil and Rahman [7] proved the following inequality (1.5) for $r \geq 1$.

Later it was shown by Gardner and Weems [6], and independently by Rather [12] that inequality (1.5) also holds for $0<r<1$.

Theorem B. If $p(z)$ is a polynomial of degree n having no zero in $|z|<k, k \geq 1$, then for $r>0$,

$$
\begin{equation*}
\left\{\int_{0}^{2 \pi}\left|p^{\prime}\left(e^{i \theta}\right)\right|^{r} d \theta\right\}^{\frac{1}{r}} \leq n F_{r}\left\{\int_{0}^{2 \pi}\left|p\left(e^{i \theta}\right)\right|^{r} d \theta\right\}^{\frac{1}{r}} \tag{1.5}
\end{equation*}
$$

where
$F_{r}=\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|k+e^{i \alpha}\right|^{r} d \alpha\right\}^{-\frac{1}{r}}$.
For the same class of polynomials, Aziz and Shah [2] considered the sth derivative of $p(z), 1 \leq s<n$, and generalized inequality (1.5) by proving
Theorem C. If $p(z)$ is a polynomial of degree n which does not vanish in $|z|<k$, where $k \geq 1$, then for each $r>0$ and $1 \leq s<n$,

$$
\begin{align*}
\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|p^{s}\left(e^{i \theta}\right)\right|^{r} d \theta\right)^{\frac{1}{r}} & \leq \frac{n(n-1) \ldots \ldots(n-s+1)}{\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|k^{s}+e^{i \alpha}\right|^{r} d \alpha\right)^{\frac{1}{r}}} \tag{1.6}\\
& \times\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|p\left(e^{i \theta}\right)\right|^{r} d \theta\right)^{\frac{1}{r}}
\end{align*}
$$

By involving some coefficients and $m=\min _{|z|=k}|p(z)|$, we present a generalization and an improvement of Theorem C. More precisely, we obtain

Theorem. If $p(z)$ is a polynomial of degree n which does not vanish in $|z|<k$, where $k \geq 1$, then for each $r>0,1 \leq s<n$, and for every real or complex number β such that $|\beta|<\frac{1}{k^{n}}$,

$$
\begin{align*}
& \left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|p^{s}\left(e^{i \theta}\right)+\beta m n(n-1) \ldots(n-s+1) e^{i \theta(n-s)}\right|^{r} d \theta\right)^{\frac{1}{r}} \\
& \quad \leq \frac{n(n-1) \ldots \ldots .(n-s+1)}{\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\delta_{k, s}+e^{i \alpha}\right|^{r} d \alpha\right)^{\frac{1}{r}}}\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|p\left(e^{i \theta}\right)+\beta m e^{i \theta n}\right|^{r} d \theta\right)^{\frac{1}{r}} \tag{1.7}
\end{align*}
$$

where

$$
m=\min _{|z|=k}|p(z)|
$$

and
$\delta_{k, s}=\left\{\frac{c(n, s)\left|a_{0}\right| k^{s+1}+\left|a_{s}\right| k^{2 s}}{c(n, s)\left|a_{0}\right|+\left|a_{s}\right| k^{s+1}}\right\}$ with $c(n, s)=\frac{n!}{s!(n-s)!}$.

Remark 1. If we put $\beta=0$, our theorem directly reduces to the following result proved by Aziz and Rather [1] and is an improvement of inequality (1.6) due to Aziz and Shah [2].

Corollary 1. If $p(z)$ is a polynomial of degree n which does not vanish in $|z|<k$, where $k \geq 1$, then for each $r>0$ and $1 \leq s<n$,

$$
\begin{align*}
\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|p^{s}\left(e^{i \theta}\right)\right|^{r} d \theta\right)^{\frac{1}{r}} & \leq \frac{n(n-1) \ldots \ldots . .(n-s+1)}{\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\delta_{k, s}+e^{i \alpha}\right|^{r} d \alpha\right)^{\frac{1}{r}}} \tag{1.8}\\
& \times\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|p\left(e^{i \theta}\right)\right|^{r} d \theta\right)^{\frac{1}{r}}
\end{align*}
$$

where
$\delta_{k, s}=\left\{\frac{c(n, s)\left|a_{0}\right| k^{s+1}+\left|a_{s}\right| k^{2 s}}{c(n, s)\left|a_{0}\right|+\left|a_{s}\right| k^{s+1}}\right\}$ with $c(n, s)=\frac{n!}{s!(n-s)!}$.
Remark 2. Taking limit of both sides of (1.7) as $r \rightarrow \infty$, we have

$$
\begin{align*}
\max _{|z|=1}\left|p^{s}(z)+\beta m n(n-1) \ldots \ldots(n-s+1) z^{n-s}\right| \leq & \frac{n(n-1) \ldots \ldots(n-s+1)}{\delta_{k, s}+1} \\
& \times \max _{\mid z=1}\left|p(z)+\beta m z^{n}\right| \\
\leq & \frac{n(n-1) \ldots \ldots \ldots(n-s+1)}{\delta_{k, s}+1} \tag{1.9}\\
& \times\left\{\max _{|z|=1}|p(z)|+|\beta| m\right\} .
\end{align*}
$$

If we choose z_{0} such that $\max _{|z|=1}\left|p^{s}(z)\right|=\left|p^{s}\left(z_{0}\right)\right|$. It is clear that

$$
\begin{aligned}
\mid p^{s}\left(z_{0}\right)+ & \beta m n(n-1) \ldots \ldots .(n-s+1) z_{0}^{n-s} \mid \\
& \leq \max _{|z|=1}\left|p^{s}(z)+\beta m n(n-1) \ldots \ldots(n-s+1) z^{n-s}\right|,
\end{aligned}
$$

and hence (1.9), in particular, gives
$\left|p^{s}\left(z_{0}\right)+\beta m n(n-1) \ldots . .(n-s+1) z_{0}^{n-s}\right| \leq \frac{n(n-1) \ldots \ldots \ldots \ldots .(n-s+1)}{\delta_{k, s}+1}\left\{\max _{z=1}|p(z)|+|\beta| m\right\}$

Now choosing the argument of β in (1.10) suitably such that

$$
\begin{aligned}
& \left|p^{s}\left(z_{0}\right)+\beta m n(n-1) \ldots \ldots(n-s+1) z_{0}^{n-s}\right| \\
& =\left|p^{s}\left(z_{0}\right)\right|+|\beta| m n(n-1) \ldots \ldots(n-s+1)
\end{aligned} .
$$

Then inequality (1.10) becomes

$$
\begin{aligned}
& \left|p^{s}\left(z_{0}\right)\right| \leq \frac{n(n-1) \ldots . .(n-s+1)}{\delta_{k, s}+1} \\
& \quad \times\left\{\max _{|z|=1}|p(z)|+|\beta| m\right\}-|\beta| m n(n-1) \ldots(n-s+1)
\end{aligned}
$$

which is equivalent to

$$
\begin{aligned}
\max _{|z|=1}\left|p^{s}(z)\right| & \leq \frac{n(n-1) \ldots \ldots . .(n-s+1)}{\delta_{k, s}+1} \max _{|z|=1}|p(z)| \\
& -\left\{1-\frac{1}{\delta_{k, s}}\right\} n(n-1) \ldots \ldots \ldots . .(n-s+1)|\beta| m
\end{aligned} .
$$

Finally, letting $|\beta| \rightarrow \frac{1}{k^{n}}$, we obtain

$$
\begin{align*}
\max _{|z|=1}\left|p^{s}(z)\right| \leq & \left\{\frac{c(n, s)\left|a_{0}\right|+\left|a_{s}\right| k^{s+1}}{c(n, s)\left|a_{0}\right|\left(1+k^{s+1}\right)+\left|a_{s}\right|\left(k^{s+1}+k^{2 s}\right)}\right\} \\
& \times n(n-1) \ldots(n-s+1) \max _{|z|=1}|p(z)| \\
- & \left\{\frac{c(n, s)\left|a_{0}\right| k^{s+1}+\left|a_{s}\right| k^{2 s}}{c(n, s)\left|a_{0}\right|\left(1+k^{s+1}\right)+\left|a_{S}\right|\left(k^{s+1}+k^{2 s}\right)}\right\} \\
& \times n(n-1) \ldots . .(n-s+1) \frac{m}{k^{n}} \tag{1.11}
\end{align*}
$$

Remark 3. Inequality (1.11) improves upon the following result due to Aziz and Rather [1].

Corollary 2. If $p(z)=\sum_{v=0}^{n} a_{v} z^{v}$ is a polynomial of degree n which does not vanish in $|z|<k$, where $k \geq 1$, then

$$
\begin{align*}
& \max _{|z|=1}\left|p^{s}(z)\right| \leq\left\{\frac{c(n, s)\left|a_{0}\right|+\left|a_{s}\right| k^{s+1}}{c(n, s)\left|a_{0}\right|\left(1+k^{s+1}\right)+\left|a_{s}\right|\left(k^{s+1}+k^{2 s}\right)}\right\} . \\
& \times \max _{|z|=1}|p(z)| . \tag{1.12}
\end{align*}
$$

Remark 4. For $s=1$, (1.12) becomes

$$
\begin{aligned}
\max _{|z|=1}\left|p^{\prime}(z)\right| \leq & \left\{\frac{n\left|a_{0}\right|+\left|a_{1}\right| k^{2}}{n\left|a_{0}\right|\left(1+k^{2}\right)+2\left|a_{1}\right| k^{2}}\right\} n \max _{|z|=1}|p(z)| \\
& -\left\{\frac{n\left|a_{0}\right| k^{2}+\left|a_{1}\right| k^{2}}{n\left|a_{0}\right|\left(1+k^{2}\right)+2\left|a_{1}\right| k^{2}}\right\} n \frac{m}{k^{n}}
\end{aligned} .
$$

which gives an improvement of the following result due to Govil et al. [8].

Corollary 3. If $p(z)=\sum_{v=0}^{n} a_{v} z^{v}$ is a polynomial of degree n which does not vanish in $|z|<k$, where $k \geq 1$, then $\max _{|z|=1}\left|p^{\prime}(z)\right| \leq\left\{\frac{n\left|a_{0}\right|+\left|a_{1}\right| k^{2}}{n\left|a_{0}\right|\left(1+k^{2}\right)+2\left|a_{1}\right| k^{2}}\right\} n \max _{|z|=1}|p(z)|$.

2. Lemma

For the proof of the theorem, we require the following lemmas.
Lemma 2.1. If $p(z)$ is a polynomial of degree n and $q(z)=z^{n} \overline{p\left(\frac{1}{\bar{z}}\right)}$, then for each $\alpha, 0 \leq \alpha<2 \pi$ and $r>0$,

$$
\begin{equation*}
\int_{0}^{2 \pi 2 \pi} \int_{0}\left|q^{\prime}\left(e^{i \theta}\right)+e^{i \alpha} p^{\prime}\left(e^{i \theta}\right)\right|^{r} d \theta d \alpha \leq 2 \pi n^{r} \int_{0}^{2 \pi}\left|p\left(e^{i \theta}\right)\right|^{r} d \theta \tag{2.1}
\end{equation*}
$$

The above lemma is due to Aziz and Rather [1].
Lemma 2.2. Let z be complex and independent of α, where α is real, then for $r>0$,

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|1+z e^{i \alpha}\right|^{r} d \alpha=\int_{0}^{2 \pi}\left|e^{i \alpha}+|z|\right|^{r} d \alpha \tag{2.2}
\end{equation*}
$$

This lemma is due to Govil [5].
Lemma 2.3. If $p(z)$ is a polynomial of degree n which does not vanish in $|z|<k$, where $k \geq 1$, then for $1 \leq s<n$, and $|z|=1$,

$$
\begin{equation*}
\delta_{k, s}\left|p^{(s)}(z)\right| \leq\left|q^{(s)}(z)\right|, \tag{2.3}
\end{equation*}
$$

where

$$
\delta_{k, s}=\left\{\frac{c(n, s)\left|a_{0}\right| k^{s+1}+\left|a_{s}\right| k^{2 s}}{c(n, s)\left|a_{0}\right|+\left|a_{s}\right| k^{s+1}}\right\}
$$

with $c(n, s)=\frac{n!}{s!(n-s)!}$.

Proof of the Theorem
Since β, a real or complex number such that $|\beta|<\frac{1}{k^{n}}$, therefore on $|z|=k$,

$$
\left|m \beta z^{n}\right|=m|\beta| k^{n}<m=\min _{|z|=k}|p(z)|
$$

By Rouché's theorem, the polynomial $P(z)=p(z)+m \beta z^{n}$ will have no zero in $|z|<k, k \geq 1$. Further, the case for $m=0$ is trivially true.

Let $F(z)=Q(z)+e^{i \alpha} P(z), \alpha \in \Re \quad$ where $Q(z)=z^{n} \overline{P\left(\frac{1}{\bar{z}}\right)}$ the reciprocal polynomial is. Then $F(z)$ is a polynomial of degree n and $F^{(s)}(z)=Q^{(s)}(z)+e^{i \alpha} Q^{(s)}(z)$ is a polynomial of degree $n-s$. By repeated application of inequality (1.1), it follows for each $r>0$,

$$
\begin{align*}
& \int_{0}^{2 \pi}\left|Q^{(s)}\left(e^{i \theta}\right)+e^{i \alpha} P^{(s)}\left(e^{i \theta}\right)\right|^{r} d \theta \leq(n-s+1)^{r} \\
& \quad \times \int_{0}^{2 \pi}\left|Q^{(s-1)}\left(e^{i \theta}\right)+e^{i \alpha} P^{(s-1)}\left(e^{i \theta}\right)\right|^{r} d \theta \\
& \leq(n-s+1)^{r}(n-s+2)^{r} \ldots(n-1)^{r} \\
& \quad \times \int_{0}^{2 \pi}\left|Q^{\prime}\left(e^{i \theta}\right)+e^{i \alpha} P^{\prime}\left(e^{i \theta}\right)\right|^{r} d \theta \tag{3.1}
\end{align*}
$$

Integrating (3.1) with respect to α on $[0,2 \pi$), and using lemma

$$
\begin{aligned}
& \begin{aligned}
& \int_{0}^{2.1,} \mid Q^{(s)}\left(e^{i \theta}\right)+\left.e^{i \alpha} P^{(s)}\left(e^{i \theta}\right)\right|^{r} d \theta \leq(n-s+1)^{r}(n-s+2)^{r} \ldots \\
& \times(n-1)^{r} \int_{0}^{2 \pi} \int_{0}^{2 \pi}\left|Q^{\prime}\left(e^{i \theta}\right)+e^{i \alpha} P^{\prime}\left(e^{i \theta}\right)\right|^{r} d \theta d \alpha \\
& \leq(n-s+1)^{r}(n-s+2)^{r} \ldots(n-1)^{r} n^{r} \int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{r} d \theta
\end{aligned}
\end{aligned}
$$

By lemma 2.3, we have for $1 \leq s<n$, for $|z|=1$,

$$
\begin{equation*}
\delta_{k, s}\left|P^{(s)}(z)\right| \leq\left|Q^{(s)}(z)\right|, \tag{3.3}
\end{equation*}
$$

where $\delta_{k, s} \geq 1$ is as defined in lemma 2.3. It can be easily verified that for every real number α and $R \geq R^{\prime} \geq 1$, $\left|R+e^{i \alpha}\right| \geq\left|R^{\prime}+e^{i \alpha}\right|$.

This implies for each $r>0$,

$$
\int_{0}^{2 \pi}\left|R+e^{i \alpha}\right|^{r} d \alpha \geq \int_{0}^{2 \pi}\left|R^{\prime}+e^{i \alpha}\right|^{r} d \alpha
$$

For points $e^{i \theta}, 0 \leq \theta<2 \pi$, for which $P^{(s)}\left(e^{i \theta}\right) \neq 0$, we take $R=\frac{\left|Q^{(s)}\left(e^{i \theta}\right)\right|}{\left|P^{(s)}\left(e^{i \theta}\right)\right|}$ and $R^{\prime}=\delta_{k, s}$, then by (3.3), $R \geq R^{\prime} \geq 1$,

$$
\begin{align*}
\int_{0}^{2 \pi}\left|Q^{(s)}\left(e^{i \theta}\right)+e^{i \alpha} P^{(s)}\left(e^{i \theta}\right)\right|^{r} d \alpha & =\left|P^{(s)}\left(e^{i \theta}\right)\right| \int_{0}^{r}\left|\frac{Q^{(s)}\left(e^{i \theta}\right)}{P^{(s)}\left(e^{i \theta}\right)}+e^{i \alpha}\right| d \alpha \\
& \geq\left|P^{(s)}\left(e^{i \theta}\right)\right| \int_{0}^{r}\left|\delta_{k, s}+e^{i \alpha}\right|^{r} d \alpha \tag{3.4}
\end{align*}
$$

Also for points $e^{i \theta}, \quad 0 \leq \theta<2 \pi$, for which $P^{(s)}\left(e^{i \theta}\right)=0$, inequality (3.4) follows trivially. Using (3.2) in (3.4), it is concluded that for each $r>0$,

$$
\begin{align*}
\int_{0}^{2 \pi}\left|\delta_{k, s}+e^{i \alpha}\right|^{r} d \alpha \int_{0}^{2 \pi}\left|P^{(s)}\left(e^{i \theta}\right)\right|^{r} d \theta & \leq(n-s+1)^{r}(n-s+2)^{r} \ldots \\
& \times(n-1)^{r} n^{r} 2 \pi \int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{r} d \theta \tag{3.5}
\end{align*}
$$

On replacing $P(z)$ in (3.5) by $p(z)+m \beta z^{n}$, we have

$$
\begin{aligned}
& \left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|p^{s}\left(e^{i \theta}\right)+\beta m n(n-1) \ldots \ldots \ldots \ldots(n-s+1) e^{i(n-s) \theta}\right|^{r} d \theta\right)^{\frac{1}{r}} \\
& \quad \leq \frac{n(n-1) \ldots \ldots \ldots(n-s+1)}{\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\delta_{k, s}+e^{i \alpha}\right|^{r} d \alpha\right)^{\frac{1}{r}}}\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|p\left(e^{i \theta}\right)+\beta m e^{i \theta n}\right|^{r} d \theta\right)^{\frac{1}{r}}
\end{aligned}
$$

This proves the Theorem.
(3.2)

REFERENCES

[1] Aziz A. and Rather N.A., 'Some Zygmund type L^{q} inequalities for polynomials,'" J. Math. Anal. Appl., 289, pp. 14-29, 2004.
[2] Aziz A. and Shah W. M., " L^{p} inequalities for polynomials with restricted zeros," Proc. Indian Acad. Sci. Math. Sci. 108, pp. 6368, 1998.
[3] S. Bernstein, 'Lecons Sur Les Propriétés extrémales et la meilleure approximation des functions analytiques d'une fonctions reele," Paris, 1926.
[4] de-Bruijn N.G., 'Inequalities concerning polynomials in the complex domain," Nederl. Akad. Wetench. Proc. Ser. A, 50, pp.1265-1272, 1947, Indag. Math., 9, pp. 591-598, 1947.
[5] Gardner R.B. and Govil N.K., "An L^{p} inequality for a polynomial and its derivative," J. Math. Anal. Appl., 194, pp. 720-726, 1995.
[6] Gardner R.B. and Weems A., "A Bernstein-type of L^{p} inequality for a certain class of polynomials," J. Math. Anal. Appl., 219, pp. 472-478, 1998,.
[7] Govil N.K. and Rahman Q.I., 'Functions of exponential type not vanishing in a half-plane and related polynomials," Trans. Amer. Math. Soc., 137, pp. 501-517, 1969.
[8] Govil N.K., Rahman Q.I. and Schmeisser G., ' On the derivative of a polynomial,’’ Illinois J. Math., 23, 319-329, 1979.
[9] Lax P.D., 'Proof of a conjecture of P. Erdös on the derivative of a polynomial,'" Bull. Amer. Math. Soc., 50, pp. 509-513, 1944.
[10] Rahman Q.I., "Functions of exponential type," Trans. Amer. Math. Soc., 135, pp. 295-309, 1969.
[11] Rahman Q.I. and Schmeisser G., " L^{p} inequalities for polynomials,'" J. Approx. Theory, 53, pp. 26-32, 1988.
[12] Rather N.A., 'Extremal properties and location of the zeros of polynomials," Ph.D. Thesis, University of Kashmir, 1998.
[13] Rudin W., ''Real and complex Analysis,'" Tata Mcgraw-Hill Publishing Company (Reprinted in India), 1977.
[14] Taylor A.E., 'Introduction to Functional Analysis," John Wiley and Sons, Inc. New York, 1958.

